The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis.
نویسندگان
چکیده
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.
منابع مشابه
Phytol from Degradation of Chlorophyll Feeds Biosynthesis of Tocopherols.
Tocopherols, a subclassof tocochromanols that contain a phytol attached to the head group, act as antioxidants to protect lipids from oxidative damage, a particularly important function in chloroplasts and for seed longevity (reviewed in Maeda and DellaPenna, 2007). One pathway for tocopherol biosynthesis involves de novo synthesis from geranylgeranyl-diphosphate; the other pathway uses phytols...
متن کاملChlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing.
Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1)...
متن کاملRemobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis.
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocoph...
متن کاملVitamin E is essential for seed longevity and for preventing lipid peroxidation during germination.
Tocopherols (vitamin E) are lipophilic antioxidants synthesized by all plants and are particularly abundant in seeds. Despite cloning of the complete suite of tocopherol biosynthetic enzymes and successful engineering of the tocopherol content and composition of Arabidopsis thaliana leaves and seeds, the functions of tocopherols in plants have remained elusive. To address this issue, we have is...
متن کاملEngineering vitamin E content: from Arabidopsis mutant to soy oil.
We report the identification and biotechnological utility of a plant gene encoding the tocopherol (vitamin E) biosynthetic enzyme 2-methyl-6-phytylbenzoquinol methyltransferase. This gene was identified by map-based cloning of the Arabidopsis mutation vitamin E pathway gene3-1 (vte3-1), which causes increased accumulation of delta-tocopherol and decreased gamma-tocopherol in the seed. Enzyme as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2006